Programming by Examples

نویسنده

  • Sumit GULWANI
چکیده

Programming by Examples (PBE) has the potential to revolutionize enduser programming by enabling end users, most of whom are non-programmers, to create scripts for automating repetitive tasks. PBE involves synthesizing intended programs in an underlying domain-specific language (DSL) from example based specifications (Ispec). We formalize the notion of Ispec and discuss some principles behind designing useful DSLs for synthesis. A key technical challenge in PBE is to search for programs that are consistent with the Ispec provided by the user. We present a divide-and-conquer based search paradigm that leverages deductive rules and version space algebras for manipulating sets of programs. Another technical challenge in PBE is to resolve the ambiguity that is inherent in the Ispec. We show how machine learning based ranking techniques can be used to predict an intended program within a set of programs that are consistent with the Ispec. We also present some user interaction models including program navigation and active-learning based conversational clarification that communicate actionable information to the user to help resolve ambiguity in the Ispec. The above-mentioned concepts are illustrated using practical PBE systems for data wrangling (including FlashFill, FlashExtract, FlashRelate), several of which have already been deployed in the real world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical approach for optimal control model of the convex semi-infinite programming

In this paper, convex semi-infinite programming is converted to an optimal control model of neural networks and the optimal control model is solved by iterative dynamic programming method. In final, numerical examples are provided for illustration of the purposed method.

متن کامل

A New Method For Solving Linear Bilevel Multi-Objective Multi-Follower Programming Problem

Linear bilevel programming is a decision making problem with a two-level decentralized organization. The leader is in the upper level and the follower, in the lower level. This study addresses linear bilevel multi-objective multi-follower programming (LB-MOMFP) problem, a special case of linear bilevel programming problems with one leader and multiple followers where each decision maker has sev...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A goal programming approach for fuzzy flexible linear programming problems

 We are concerned with solving Fuzzy Flexible Linear Programming (FFLP) problems. Even though, this model is very practical and is useful for many applications, but there are only a few methods for its situation. In most approaches proposed in the literature, the solution process needs at least, two phases where each phase needs to solve a linear programming problem. Here, we propose a method t...

متن کامل

An iterative method for tri-level quadratic fractional programming problems using fuzzy goal programming approach

Tri-level optimization problems are optimization problems with three nested hierarchical structures, where in most cases conflicting objectives are set at each level of hierarchy. Such problems are common in management, engineering designs and in decision making situations in general, and are known to be strongly NP-hard. Existing solution methods lack universality in solving these types of pro...

متن کامل

Sufficient global optimality conditions for general mixed integer nonlinear programming problems

‎In this paper‎, ‎some KKT type sufficient global optimality conditions‎ ‎for general mixed integer nonlinear programming problems with‎ ‎equality and inequality constraints (MINPP) are established‎. ‎We achieve‎ ‎this by employing a Lagrange function for MINPP‎. ‎In addition‎, ‎verifiable sufficient global optimality conditions for general mixed‎ ‎integer quadratic programming problems are der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016